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the same order as the experimental errors, the effect of 
many branches is not included in this paper. 

The author is grateful to Mr M. Kogiso for critical 
discussion. Thanks are due to Messrs T. Suzuki and T. 
Got6 for assistance and the Computation Center of 
Nagoya University for numerical calculations. 
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Abstract 

A straightforward procedure (assuming spherical sym- 
metry) is described, which enables the unwanted 
small-angle component of the scattering for a finite 
model to be calculated. The method may be applied to 
models of any shape or size. It is illustrated by means of 
a single polymer chain. 

The use of X-ray scattering to elucidate the local 
structure of non-crystalline materials is well established. 
This analysis is facilitated by comparison of the 
experimental scattering with that calculated from 
models (Wright, 1974; Adams, Balyuzi & Burge, 1976; 
Lovell, Mitchell & Windle, 1980). For practical as well 
as structural reasons the size of these models is limited 
and consequently the calculated scattering contains an 
unwanted small-angle component, which is only de- 
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pendent upon the shape and size of the model. This 
scattering will be dominant at low angles and may 
swamp relevant structural detail. To make valid 
comparisons with experimental data in this region, it is 
vital to eliminate or at least considerably reduce this 
scattering. 

A method of calculating the small-angle scattering 
(assuming spherical symmetry) is presented for a model 
of arbitrary shape and size. 

In general, comparisons of experimental and model 
scattering are made with the s-weighted reduced 
intensity function si(s) 

n 

i(s) = kIco.(S ) - y f?(s)/n, (1) 
i 

where Icorr(S) is the fully corrected data, k a scaling 
factor, ~ f/2(s) the independent scattering from one 
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repeat unit of n atoms, and s = 4~r sin O/l. The 
corresponding model scattering is calculated from the 
atomic coordinates by the Debye formula (Warren, 
1969). For a model of N atoms 

N N 

Nim(S) = ~. ~. f j(s) fk(s)  sin ryk s/rjk s, (2)  
j~k 

where rjk is the distance between thejth and kth atoms. 
The simplest method of reducing the effect of the 

small-angle scattering is to increase the size of the 
model (Adams, Balyuzi & Burge, 1976) and so move 
the influence of the scattering to even smaller angles. 
This is only really effective if it is possible to increase 
the dimensions of the model in all directions. Fur- 
thermore, unless the enlargement of the model contains 
a disorder component, the correlation length or volume 
of the model will be increased, and this may well 
represent a parameter which is to be determined within 
the framework of the structural investigation. 

The small-angle scattering i'm(S) may be calculated by 
considering a volume of the same shape and size as the 
model, but with no internal structure, i.e. with constant 
electron density (based on Guinier & Fournet, 1955) 

i1± L si '(s) = fl(s) 4rCPof rT0(r) sin rs dr, (3) 
i 0 

where Po is the average atomic density, and ?o(r) is a 
shape function. ?o(r) has the value of unity at r = 0 and 
decreases to zero at an r value corresponding to the line 
of maximum length through the model volume. It is the 
self-convolution of the shape ~(r), 

),0(r) = tP(r), tP(r), (4) 

where ~P(r) = 1 within the volume and 0 outside it. 
For simple shapes such as spheres (Mason, 1968), 

rectangular parallelepipeds (Bell, 1968; Goodisman, 
1980) and cylinders (Guinier & Fournet, 1955), 
analytical expressions have been derived for either ),0(r) 
or its Fourier transform. For models which may be 
assumed to have one of these smooth envelopes, the 
small-angle scattering may be readily calculated and 
subtracted from the total scattering (Wright, 1974), 
although the 'surface roughness' of a small model may 
introduce significant aberrations. 

Adams, Balyuzi & Burge (1976) and Lovell, 
Mitchell & Windle (1980) have compared the experi- 
mental scattering from non-crystalline polymers with 
that calculated for a single isolated polymer chain. This 
type of model is generally neither spherical nor 
cylindrical. For a chain of irregular trajectory, ?0(r) will 
be of Gaussian form (Flory, 1969) with a standard 
deviation related to the second moment of the end- 
to-end length distribution <r2>. Since if ?0(r) is 
Gaussian, si ' (s)  will also be Gaussian, the small-angle 
scattering can be calculated by fitting a Gaussian 

function to the low-angle region of the model scattering; 
this avoids the need to calculate <r2>. 

For models of an arbitrary shape, (4) cannot be 
simply evaluated. However, in calculating the scattering 
ira(s) from (2), the self-convolution of the model has 
been derived in the form of a set of interatomic 
distances {rjk }. These can be sorted into a histogram 
which represents the self-convolution of a volume with 
its density concentrated at the atom centres, that is, the 
atomic radial density function H(r): 

H(r) = 4zrr 2 p(r), (5) 

where p(r) is the atomic density. To calculate the RDF 
of a similar but uniform volume, H'(r), the density 
concentrated at each atom centre must be smeared over 
a volume representing the average space between 
atoms. Strictly, this smearing about each atom should 
be made before convoluting the model with itself and 
spherically averaging to obtain H'(r). However, if 
spherical symmetry is assumed about each atom centre 
then the simple one-dimensional smearing of H(r) may 
be made 

H'(r)  = 4zrr 2 Po )'0(r) = H(r) • V(r), (6) 

where V(r) is the self-convolution of the average 
volume about an atom. 

To illustrate this average spacing, a simple model of 
a monatomic fluid (for this example liquid Pb) has been 
used. The model is an assemblage of random but 
close-packed spheres whose centres lie within a 

/ 
/ I I I I I ~, 
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Fig. 1 (a) - -  The atomic R D F  H(r) for an assemblage of ran- 
domly close-packed Pb atoms in a spherical envelope of radius 
15/~. (b) - - -  H'(r), the result of smearing H(r) with a Gaussian 
of standard deviation 1.6 A. (c) .......... The R D F  for a sphere of 
radius 15 A with a uniform atomic density. 
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spherical envelope of radius 15 A. The atomic RDF,  
H(r), for this model is shown in Fig. 1 (curve a). 

If the density at each atom centre is smeared 
uniformly throughout a sphere of the appropriate van 
der Waals radius (for Pb r v = 1.72 A), then all the 
space will be occupied apart from the interstices of the 
sphere structure. It is evident that a larger or different 
smearing shape is required to generate a uniform 
density throughout the model volume. As the order of 
operations of smearing, self-convolution and spherical 
averaging has been altered, the choice of smearing 
shape, or more exactly the spherical average of its 
self-convolution, is to some extent arbitrary. Gaussian 
functions as well as the self-convolution of a sphere 
have been found to be adequate. The function H'(r), 
obtained by applying (6) with V(r) a Gaussian of 
standard deviation 1.6/k, is shown in Fig. 1 (curve b). 
For comparison, H '  (r) for a sphere of radius 15 A, with 
the same average density as the model obtained by 
application of the expression given by Mason (1968), is 
shown in Fig. 1 (curve c). The two curves (b and c) are 
very similar, although as they represent slightly different 
models there is no necessity for a closer agreement. 

The smearing of the atomic RDF could of course be 
carried out in reciprocal space by the equivalent 
multiplication of the Fourier transforms of the real- 

E 
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Fig. 2. (a) - -  The s-weighted reduced intensity Sim(S ) for a 
section of a poly(bisphenol A carbonate) chain 40 A in length. (b) 
.......... sire(s) with the small-angle scattering si'(s) due to the finite 
model size removed by using (7) with v(s) set to the self- 
convolution of a sphere of radius 1.7 A. 

space functions, giving i '(s) directly. Equation (3) 
becomes 

i '(s) = fi(s) v(s) Z ~. sin rjk s/r~k s, (7) 
i j ~ k  

where v(s) is the Fourier transform of V(r). This 
equation is much simpler to apply as similar compo- 
nents are calculated for (2). Where a Gaussian function 
is used for V(r), v(s) will also be a Gaussian and an 
analytical expression for v(s) has been given by Guinier 
& Fournet (1955) for a sphere. 

The versatility of the procedure embodied in (7) will 
be illustrated by its application to a model of arbitrary 
shape. The model is a section of a poly(bisphenol A 
carbonate) chain in zig-zag conformation of overall 
length 40 A. The experimental scattering pattern from 
this material exhibits a temperature-sensitive peak at 
--0.5/k -1 (Saffell & Windle, 1980), which is thought 
to arise from interferences within a chain. The small 
cross section of the model chain means that the 
scattering calculated from (2) (Fig. 2 curve a) has a 
small-angle component which swamps all detail from 
s = 0 to 1.5 A -1. This small-angle component i ' ( s )was  
calculated from (7) with v(s) for a sphere of radius 
1.7 A. The corrected form of ira(s) (Fig. 2 curve b), 
although unchanged for s values >2 A -~, reveals a peak 
at 1.0 A -1 and a shoulder at 0.5 A-k  

The application of (7) is easily carried out. It involves 
little extra computation, and in principle could be 
extended to the calculation of two-dimensional patterns 
relevant to oriented material from models with cylindri- 
cal symmetry. It is most useful for models with 
irregular shape or of limited size. 
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